Monday, 13 April 2015

Udemy Free Course - Strength of Material - 100% Off

Free Udemy Course

Course Description

In this elementary study on the strength of materials the response of some simple structural components is analyzed in a consistent manner using i) equilibrium equations, ii) material law equations, and iii) the geometry of deformation. The components analyzed include rods subjected to axial loading, shafts loaded in torsion, slender beams in bending, thin-walled pressure vessels, slender columns susceptible to buckling, as well as some more complex structures and loads where stress transformations are used to determine principal stresses and the maximum shear stress. The free body diagram is indispensable in each of these applications for relating the applied loads to the internal forces and moments and plotting internal force diagrams. Material behavior is restricted to be that of materials in the linear elastic range. A description of the geometry of deformation is necessary to determine internal forces and moments in statically indeterminate problems
Mechanics of materials, also called strength of materials, is a subject which deals with the behavior of solid objects subject to stresses and strains. The complete theory began with the consideration of the behavior of one and two dimensional members of structures, whose states of stress can be approximated as two dimensional, and was then generalized to three dimensions to develop a more complete theory of the elastic and plastic behavior of materials
The study of strength of materials often refers to various methods of calculating the stresses and strains in structural members, such as beams, columns, and shafts. The methods employed to predict the response of a structure under loading and its susceptibility to various failure modes takes into account the properties of the materials such as its yield strength, ultimate strength, Young's modulus, and Poisson's ratio; in addition the mechanical element's macroscopic properties (geometric properties), such as it length, width, thickness, boundary constraints and abrupt changes in geometry such as holes are considered
So in materials science, the strength of a material is its ability to withstand an applied load without failure. The field of strength of materials deals with forces and deformations that result from their acting on a material. A load applied to a mechanical member will induce internal forces within the member called stresses when those forces are expressed on a unit basis. The stresses acting on the material cause deformation of the material in various manner. Deformation of the material is called strain when those deformations too are placed on a unit basis. The applied loads may be axial (tensile or compressive), or shear. The stresses and strains that develop within a mechanical member must be calculated in order to assess the load capacity of that member. This requires a complete description of the geometry of the member, its constraints, the loads applied to the member and the properties of the material of which the member is composed. With a complete description of the loading and the geometry of the member, the state of stress and of state of strain at any point within the member can be calculated. Once the state of stress and strain within the member is known, the strength (load carrying capacity) of that member, its deformations (stiffness qualities), and its stability (ability to maintain its original configuration) can be calculated. The calculated stresses may then be compared to some measure of the strength of the member such as its material yield or ultimate strength. The calculated deflection of the member may be compared to deflection criteria that is based on the member's use. The calculated buckling load of the member may be compared to the applied load. The calculated stiffness and mass distribution of the member may be used to calculate the member's dynamic response and then compared to the acoustic environment in which it will be used
We are going to focus on stress and strain concepts, axial load, statically indeterminate axially loaded members, thermal stress, torsion, angle of twist, statically indeterminate torque-loaded members, bending, eccentric axial loading of beams, transverse shear, shear flow in build-up members, combined loadings, stress and strain transformation, deflection of beams and shafts, statically indeterminate beams and shafts

Curriculum

Concept of Stress
Determining decrease in diameter
Determining Volumetric strength 
Direct or Normal Stress
Elastic Constants- important Formulae
Finding value of k
Hooke's Law
Important Formulas
Introduction to mechanical properties
Introduction to Strength of Material
Malleability and Impact Strength
Mechanics of Material
Numerical- Bulk Modulus
Numerical- Diameter of Steel Rod
Numerical- Finding Deformation of the Rod
Numerical for Practice
Numerical- Poisson's ratio
Numerical- Poisson's ratio & Modules of elasticity
Problem Solving
Revision of Concepts
Revision on numericals
Section 1: Introduction to Strength of Materials
Section 2: Important Concepts in Strength of Materials
Section 3: Mechanical Properties
Section 4: Numericals
Stress Types
Understanding Creep property
Understanding Ductility
Understanding Hardness property
Understanding Plasticity
What is an Elastic Material??
What is Strength of Material?

LINK FOR THE FREE COURSE

100% Off, Udemy 100% Off, Udemy Coupon, Udemy Coupon Code, Udemy course, Udemy course download, Udemy course reviews, Udemy courses, Udemy courses for free, Udemy courses free, Udemy courses free download, Udemy discount, Udemy download, Udemy education, Udemy free, Udemy free course, Udemy free courses, Udemy free online courses, Udemy online, Udemy online course, Udemy online courses, Udemy online courses review, Udemy reviews, Udemy tutorial, Udemy tutorials, Udemy.com free courses,